(x^2+10x)+(2x+45)=180

Simple and best practice solution for (x^2+10x)+(2x+45)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+10x)+(2x+45)=180 equation:



(x^2+10x)+(2x+45)=180
We move all terms to the left:
(x^2+10x)+(2x+45)-(180)=0
We get rid of parentheses
x^2+10x+2x+45-180=0
We add all the numbers together, and all the variables
x^2+12x-135=0
a = 1; b = 12; c = -135;
Δ = b2-4ac
Δ = 122-4·1·(-135)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{19}}{2*1}=\frac{-12-6\sqrt{19}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{19}}{2*1}=\frac{-12+6\sqrt{19}}{2} $

See similar equations:

| 258=-v+88 | | 2x+x+1=6x | | 9+k=3+2 | | n=n/2 | | 5x+11=-5x+1 | | 3−–j=0 | | 2x^2+x^2-5=0 | | 7-p=5-5 | | 8x+1+97=180 | | 10x+12+2x=156 | | 7x^2-21x-56=0 | | 8x+16+7x+14=360 | | 114y=39 | | 11(x+3)=11(4+3)= | | 9^2x=100 | | 5y+3y+4=34 | | 3x+¹=6x-¹ | | 11(x+3)=11(4+3) | | -7n+11=-38 | | 5m+3/7+72m-7/3=5 | | 0.14(x+280)=6300 | | 1/(1-0.22+0.66/x)=1.7 | | 5d+10=4(d+4) | | 25x+−11= | | 1/(0.78+(0.66/x))=1.7 | | 3=-9x+4 | | 1/((1-0.22)+(0.66/x))=1.7 | | 16/x+3=19 | | 79=4-5x | | 2(2f+3)=2(f+15) | | (130-m)=m | | x/2=(52)/(22) |

Equations solver categories